A-priori analysis and the finite element method for a class of degenerate elliptic equations
نویسنده
چکیده
Consider the degenerate elliptic operator Lδ := −∂2 x − δ 2 x2 ∂2 y on Ω := (0, 1) × (0, l), for δ > 0, l > 0. We prove well-posedness and regularity results for the degenerate elliptic equation Lδu = f in Ω, u|∂Ω = 0 using weighted Sobolev spaces Km a . In particular, by a proper choice of the parameters in the weighted Sobolev spaces Km a , we establish the existence and uniqueness of the solution. In addition, we show that there is no loss of Km a -regularity for the solution of the equation. We then provide an explicit construction of a sequence of finite dimensional subspaces Vn for the finite element method, such that the optimal convergence rate is attained for the finite element solution un ∈ Vn, i.e., ||u − un||H1(Ω) ≤ Cdim(Vn) m 2 ||f ||Hm−1(Ω) with C independent of f and n.
منابع مشابه
A finite element approximation for a class of degenerate elliptic equations
In this paper we exhibit a finite element method fitting a suitable geometry naturally associated with a class of degenerate elliptic equations (usually called Grushin type equations) in a plane region, and we discuss the related error estimates.
متن کاملBuckling Analysis of Rectangular Functionally Graded Plates with an Elliptic Hole Under Thermal Loads
This paper presents thermal buckling analysis of rectangular functionally graded plates (FG plates) with an eccentrically located elliptic cutout. The plate governing equations derived by the first order shear deformation theory (FSDT) and finite element formulation is developed to analyze the plate behavior subjected to a uniform temperature rise across plate thickness. It is assumed that the ...
متن کاملHp-finite Element Methods for Hyperbolic Problems A
This paper is devoted to the a priori and a posteriori error analysis of the hp-version of the discontinuous Galerkin nite element method for partial differential equations of hyperbolic and nearly-hyperbolic character. We consider second-order partial diierential equations with nonnegative characteristic form, a large class of equations which includes convection-dominated diiusion problems , d...
متن کاملA weighted least squares finite element method for elliptic problems with degenerate and singular coefficients
We consider second order elliptic partial differential equations with coefficients that are singular or degenerate at an interior point of the domain. This paper presents formulation and analysis of a novel weighted-norm least squares finite element method for this class of problems. We propose a weighting scheme that eliminates the pollution effect and recovers optimal convergence rates. Theor...
متن کاملSome a Priori Error Estimates for Finite Element Approximations of Elliptic and Parabolic Linear Stochastic Partial Differential Equations
We study some theoretical aspects of Legendre polynomial chaos based finite element approximations of elliptic and parabolic linear stochastic partial differential equations (SPDEs) and provide a priori error estimates in tensor product Sobolev spaces that hold under appropriate regularity assumptions. Our analysis takes place in the setting of finitedimensional noise, where the SPDE coefficien...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Math. Comput.
دوره 78 شماره
صفحات -
تاریخ انتشار 2009